Density functional study of hydrogen adsorption at low temperatures
نویسندگان
چکیده
In substitution of path integral isomorphism of the quantum particle, an effective polymer ring model is proposed in the density functional calculation for hydrogen adsorption in single-walled carbon nanotubes. The excess intrinsic Helmholtz energy for quantum particles includes contributions from hard-sphere repulsion, interatomic bonding and soft attraction. The first two contributions are considered through the method developed by Yu and Wu @J. Chem. Phys. 117, 2368 ~2002!#, and the last contribution is obtained from mean field approximation using Weeks– Chandler–Anderson potential. The theoretical predictions are in good agreement with Monte Carlo simulation data for the density distributions of the hydrogen molecule inside the tube. In addition, the proposed model is applied to the calculation of the adsorption isotherms of hydrogen at 100 and 150 K. The present model is simpler than the current existing theories for quantum fluids. © 2003 American Institute of Physics. @DOI: 10.1063/1.1578614#
منابع مشابه
Electronic Properties of Hydrogen Adsorption on the Silicon- Substituted C20 Fullerenes: A Density Functional Theory Calculations
The B3LYP/6-31++G** density functional calculations were used to obtain minimum geometries and interaction energies between the molecular hydrogen and nanostructures of fullerenes, C20 (cage), C20 (bowl), C19Si (bowl, penta), C19Si (bowl, hexa). The H2 molecule is set as adsorbed in the distance of 3Å at vertical position from surface above the pentagonal and hexagonal sites of nanostructures. ...
متن کاملHydrogen Peroxide Adsorption on Graphene with Stone-Wales Defect
To explore the possibility of using graphene based biosensor, adsorption of hydrogen peroxide on graphene has been investigated using density functional theory. The electronic properties of defect free and defective graphene in the presence of different number of hydrogen peroxide have been studied. The graphene with the most stable configuration defect named as SW defect is considered. The hig...
متن کاملUnderstanding Hydrogen Adsorption in MIL-47-M (M = V and Fe) through Density Functional Theory
The present paper aims to investigate the role of open metal site metal-organic frameworks (MOFs) on hydrogen adsorptivity using periodic boundary condition (PBC) density functional theory (DFT). Hence, MIL-47-M (M = V and Fe) were selected and one hydrogen molecule adsorptivity was calculated in different orientations on them. Four different chemical sites were identified in every cluster sect...
متن کاملHydrogen Adsorption on (5,0) and (3,3) Na-decorated BNNTs
The storage capacity of hydrogen on Na-decorated born nitride nanotubes (BNNTs) is investigated by using density functional theory within Quantum Espresso and Gaussian 09. The results obtained predict that a single Na atom tends to occupy above the central region of the hexagonal rings in (5,0) and (3,3) BNNT structures with a binding energy of -2.67 and -4.28 eV/Na-atom respectively. When a si...
متن کاملInvestigation of hydralazine drug adsorption on functionalized single-walled carbon nanotubes by density functional theory (DFT) method
Background: In recent years, advances in nanotechnology presents opportunities to overcome limitations in targeted drug delivery. Nano drug carriers have the ability to change the pharmacokinetics of drugs and can improve efficacy and reduce side effects. The objective of the present work is to study the interaction of Hydralazine with functionalized carbon nanotubes by performing density funct...
متن کامل